
Designing and Building a Vector Feature Database

Marlin Gendron, Naval Research Laboratory
Stephanie Edwards, Naval Research Laboratory

Geary Layne, Naval Research Laboratory

Abstract

High-resolution imagery can be stored on the computer in digital form as a picture, for example, a digital raster map
image file. These images then can be geo-registered by computing coefficients from points with known latitude and
longitude locations. Features such as roads and airports can be extracted by applying image-processing techniques
to the geo-registered raster image. Attributes describing these features and their geographical locations are stored in
a “vector feature database”. The vector feature database contains many feature types and is considered accurate to a
given map scale. In a real-time processing system there is a need to input attributes and their locations and
subsequently retrieve such feature attributes from the database with minimum processing time. The overall size of
the database is also a consideration. This paper explores the design and construction of a vector feature database to
1) optimize the size of the database by reducing the number of attributes while still maintaining an adequate and
unique description of the feature, and 2) enable high-speed input and retrieval of features. Several data structures
that might be used to construct the database are discussed, including hash tables, binary-trees, quad-trees, and R-
trees. Ultimately a quad-tree structure modified to use geographic bitmaps is implemented and evaluated.

Acknowledgments

This work was funded by the Office of Naval Research through the Naval Research Laboratory under Program
Element 62435N. The mention of commercial products or the use of company names does not in any way imply
endorsement by the U.S. Navy. Approved for public release; distribution is unlimited.

Raster and Vector Databases

Maps come in many forms, such as nautical, aerial, and topographic. Map can be derived from satellite and
underwater imagery. These maps are usually stored digitally as raster image files or vector databases. Raster maps
are simply stored in the computer as pixels and usually originate from paper charts scanned into the computer or
directly from satellite or sonar imagery. Vector feature databases (VFDb) exist as independent feature attributes
such as roads, airports, and descriptive text that can be overlaid and combined to form a readable map. Features in a
VFDb exist separately from each other and can be added to or subtracted from the map. Features in raster map
images can only be pulled out with special feature detection algorithms. These algorithms are often complex and
CPU intensive.

When pixels in the raster image or points on a vector feature correspond to points on a surface, such as the Earth,
the raster image or vector feature is geo-rectified or geo-registered. Several map files stored together in a structured
way form a map database. Digital raster map databases exist at many different resolutions, or map scales, and
define how individual map files can be pieced together to form complete maps (Lohrenz, 1991).

The geo-rectifying process occurs by taking control points, at known latitude and longitude points on the Earth, to
generate coefficients. These coefficients are used to compute new x and y positions in the image. The number of
control points and their precision determines the accuracy of the raster map. The geographic extent of the image
and its size in pixel space determines the map scale of the image (Hager, et al., 1990; Landrum, 1989).

Figures 1 and 2 show grayscale raster map image files that have been geo-rectified. Figure 1 shows a satellite
image file depicting a highway interchange. Figure 2 shows a geo-rectified file of sidescan sonar imagery with a
bright spot and shadow of a bottom object marked by a detection algorithm.

Gendron, et al. (2003). Proceedings of the IEMS 2003 Conference, Cocoa Beach, FL. July.

 2

Figure 3 shows the highway interchange extracted from the satellite imagery and the shadow and bright spot
extracted from the sonar imagery. Two different feature detection algorithms were used to accomplish the
extraction and produce the figure.

Figure 1 - Geo-Registered Satellite Image (Raster)

Figure 3 – Examples of Features Extracted From Raster Images

Figure 2 - Geo-Registered Sonar Image (Raster)

Gendron, et al. (2003). Proceedings of the IEMS 2003 Conference, Cocoa Beach, FL. July.

 3

High-resolution imagery (e.g., one-meter) can cover a large area and contain many image files. The features
extracted from the imagery can be abundant and difficult to manage. One solution is to store these features in a
VFDb and provide a fast and efficient means to retrieve them. This paper presents a method for creating a vector
database of features and populating it with one and two-meter features. The features are stored as a compact two-
dimensional representation or picture that reduces the amount of attribute information required to describe the
object. A method is discussed in detail to query the database and retrieve the features that fall within a geographic
area of interest (AOI) in the form of a polygon similar to that shown in Figure 4.

Data Structures

Various data structures can be considered when building a VFDb, such as hashtables and binary-trees. The
hashtable maps a hash key to a value in memory without searching through every element to retrieve a desired
element. A hashing function generates an index number into the element array from a hash key. Collisions occur
when two different hash keys generate the same index. The first element hashed is stored at the index location, and
subsequent elements hashed to the same location are nearby (often just by adding one to the index) and retrieved
later in the same fashion.

Tree data structures are naturally efficient at representing hierarchical data. Rooted trees are comprised of a set of
nodes (vertices) and a set of arcs (edges) that link a parent node to one of its child nodes except the root. Any node
can be reached by following a unique path of arcs from the root. When vertices are interconnected, the tree is
considered bi-directional.

Binary-trees are the simplest kind of trees and each parent node has at most two children. Binary-tree and hashtable
data structures are only useful for one-dimensional data. Two-dimensional data, like maps and feature data, are
better managed with data structures like quad-trees and R-trees. A quad-tree is similar to a binary tree, but parent
nodes have at most four vertices.

R-trees combine the best features of binary-trees and quad-trees to efficiently store and retrieve two-dimensional
data (Roussopoulous, Kelly and Vincent, 1995). A R-tree structure is an excellent choice to store the map feature
data and provide an efficient method to retrieve features inside an AOI, but this paper will present a unique method
where a quad-tree structure is modified to use geographic bitmaps (GB) to store features on a storage device. The
resulting structure, unlike a classic quad-tree, allows for the storage of features at different resolutions from
different data sources. It also allows for the quick retrieval of features within an AOI and, at the same time, allows
for the creation of a binary feature map.

Figure 4 – Geographic Area of Interest around 50m by 30m

Gendron, et al. (2003). Proceedings of the IEMS 2003 Conference, Cocoa Beach, FL. July.

 4

Geographic Bitmaps

Bitmaps are two-dimensional binary structures in which bits are turned on (set) or off (cleared) and the row and
column of each bit gives it a unique position. This concept is extended to construct geographic bitmaps (GB),
where every bit represents a unique location on the Earth at a given map scale. Set bits denote that data exists (each
bit represents a specific coordinate on the Earth). Although the GB is defined for the entire world at a given map
scale, memory is only allocated dynamically when groups of spatially close bits are set. This makes the GB a fast
and compact data structure (Gendron, et al., 1997).

For this paper, a VFDb is designed so features are stored in tiled GBs without the need to store the actual map
images. This greatly reduces the overall size of the database. A variable tiling scheme based on feature resolution
is defined for feature GBs at each level. The feature GBs can contain more than one feature and some features can
span more than one GB. Only bits that are part of a specific feature are set. Each feature representation is
distinguished by its unique central latitude/longitude value. A binary map of the features that fall within an AOI is
created by logically “ANDING” GBs within the AOI. From the binary map, vectors can later be formed from the
features and related to feature attributes stored separately in the VFDb.

Vector Feature Database Using Geographical Bitmaps

The VFDb presented in this paper is created by first modifying a quad-tree data structure to use GBs, thereby
reducing the search time. The database stores the feature data below one-degree cell directories (in subdirectories)
on a storage device in a quad-tree hierarchy based on the feature’s central latitude and longitude location. For
example, a feature with the center latitude/longitude value of 10.34… degrees latitude and 65.09… degrees
longitude would be stored below the 10N065E directory on disk.

To quickly determine which degree cell directories exist, a GB of the entire world is created and stored on disk at
the same level as the cell directories. A set bit in the GB indicates the corresponding one-degree cell directory
exists on disk. For this paper, only features below 50 degrees latitude and above –50 degrees latitude are stored in
the database. The size of the world GB is 100 rows by 360 columns:

 Rows = 50 – (-50); Total Latitude
 Columns = 180 – (-180); Total Longitude
 Resolution = 1 degree of latitude and longitude per bit

The subdirectory structure below a one-degree cell directory is a quad-tree structure with five levels (Figure 5). The
VFDb testing for this paper contains two-meter feature data on level four and one-meter feature data on level five.

To determine which of the four nodes (subdirectories) that a latitude/longitude point (Y,X) falls within on any given
level is found by comparing it with the central latitude/longitude point (CY,CX) of each node at that level, as
follows:

Node One: X >= CX and Y >= CY
Node Two: X >= CX and Y < CY
Node Three: X < CX and Y >= CY
Node Four: X < CX and Y < CY

 To avoid searching through the entire quad-tree subdirectory structure from node to node to determine if features
are available for an AOI, GBs are stored on level one to indicate which one-meter and two-meter features exist
inside level four and level five subdirectories, respectively. The one-meter GBs are 16 rows by 16 columns found
by:

Rows = 2(level-1)

Columns = 2(level-1)

with a maximum of 4 GBs (one for each subdirectory node on level 1).

Gendron, et al. (2003). Proceedings of the IEMS 2003 Conference, Cocoa Beach, FL. July.

 5

In terms of latitude and longitude:

Rows = delta latitude / latitude resolution
Columns = delta latitude / latitude resolution

where

delta latitude = 1.0 / 2(top level); top level = 1
delta longitude = 1.0 / 2(top level); top level = 1

and

Latitude resolution = 1.0 / 2(level-1)

Longitude resolution = 1.0 / 2(level-1)

Each one-meter feature is stored at level five in a GB. The size of the GB is variable, depending on its
latitude/longitude location. GBs closer to the equator are wider than those further away. The total height and width
of a node at level five is:

Total Height = height of level 5 (in meters) / latitude resolution; latitude resolution = 1 m
Total Width = width of level 5 (in meters) / longitude resolution; longitude resolution = 1 m

The size of the one-meter feature GB on level 5 is found by:

Bitmap height = Total Height / Number of desired tiles
Bitmap Width = Total Width / Number of desired tiles

The height and width in meters is calculated as the great circle distance (WGS-84 datum) of the node. For example,
a level five directory at the lower left corner of the 00N000E one-degree cell is 3455.45m high and 3478.73m wide.
A feature GB in that directory would be 431 bits high by 434 bits wide, if the number of desired tiles is 8.

Different resolution features are found independently by checking the corresponding GBs at level 1. For example
two-meter feature coverage is indicted by a maximum of 4 (8 by 8 bitmaps) stored at level one for each of the four

Figure 5 – Quad-tree

Gendron, et al. (2003). Proceedings of the IEMS 2003 Conference, Cocoa Beach, FL. July.

 6

nodes of level one. The total height and width of a node at level four would be 6910.89m by 6910.89m, and would
contain two-meter feature GB’s of the size 431 bits high by 434 bits wide. Note that this is the same size as the one-
meter feature GBs, even though the area is twice as large. This is because the resolution of a feature at two-meters
is exactly half that at one-meter. Figure 6 shows an example of the VFDb.

Querying the Database

To query the VFDd and find all one-meter features that fall within the defined AOI (Figure 4), a GB of the MBR
size at one-meter resolution is created and bits are set that geographically correspond to the AOI polygon (Figure 4).
A software routine capable of draw and filling a polygon inside a GB is used to set the appropriate bits. These
routines accept the latitude and longitude of the polygon vertices as arguments.

The degree cells that the MBR falls within are then computed and each of these degree cells is processed one at a
time. The degree cell GB is read to determine if the degree cells to be processed exist. The one-meter AOI GB is
logically ANDED with all the one-meter 16 by 16 GBs on level one. For each bit match, the corresponding level
five directories are read and all feature GB stored there are ANDED with the AOI GB. By repeating this process
for each set bit and each GB at level one, a feature binary map of one-meter features is formed that span the AOI.
Note that features may or may not be available for all or some of the AOI. The whole process is repeated to find
two-meter features on level four by first creating a AOI GB with two-meter resolution and ANDING it with the 8
by 8 two-meter GB’s on level one.

The following is pseudo code of the query process to create a binary map for one-meter data:

Figure 6 – VFDb Structure

Gendron, et al. (2003). Proceedings of the IEMS 2003 Conference, Cocoa Beach, FL. July.

 7

 AOI_bitmap = Geo_Bitmap_Create (minlat, maxlat, minlon, maxlon, one-meter resolution…)
 World_bitmap = Read_World_Bitmap ()
 WHILE (degree_cell = Determine_Degree_Cells(AOI_bitmap))
 If (Bit_Is_Set (World_bitmap, degree_cell))
 For (All one-meter GBs at level 1 of the degree_cell) /* Up to 4 */
 available_data_bitmap = And_Bitmap (AOI_bitmap, one-meterGB)
 If (Bit_is_Set (available_data_bitmap))
 Node = Determine_Node ()

 Read_Node_Directory (Node) /* At level 5 */
 Binary_map = AND_Bitmap (Node_GB, AOI_bitmap)
 End
End

 End
 End

Attributes

Each feature in the VFDb has a unique central latitude and longitude value, or simply the center of the MBR. The
central latitude/longitude value is tied to a separate file that contains attributes similar to those listed below and is
dependent on the source map data.

Examples of feature attributes are as follows:

Attributes:
• Feature Number (1, 2, 3…)
• Feature Type (Highway, Airport, Sand Ripple, Rock)
• Bounding Polygon (Vertex Number, Latitude/Longitude…)
• Heading
• Points within the Feature (#, latitude/longitude location…)

Conclusion

This paper presents a method for building a vector database that allows quick retrieval of features at many different
resolutions. A binary feature map is easily constructed from retrieved features within a geographic AOI. Using
powerful feature detection algorithms to build GBs of features and extract attributes is one primary means to
populate the VFDb. The same algorithms can be modified to detect similar features over an AOI and match these
features with those stored in the database.

Further implementation, evaluation and testing of the GB VFDb is currently being done. This includes extending
the database above and below +/-50 degrees latitude. This extension is possible because the current GB data
structure supports polar projections. Work also continues on algorithms that will produce feature vectors from the
resulting binary map of retrieved features. The combination of robust feature detection algorithms, both for post
and real-time processing, the VFDb, and feature matching algorithms could have many applications, such as
supporting navigation systems for autonomous vehicles.

Gendron, et al. (2003). Proceedings of the IEMS 2003 Conference, Cocoa Beach, FL. July.

 8

References

M. L. Gendron, P. B. Wischow, M.E. Trenchard, M.C. Lohrenz, L.M. Riedlinger, M.J. Mehaffey (1997). "Moving
Map Composer," Naval Research Laboratory, US Patent No. 6,218,965 B1, 1-29.

J. Hager, L. Fry, S. Jacks, and D. Hill (1990). “Datums, Ellipsoids, Grids, and Grid Reference Systems,” Defense
Mapping Agency, TM8358.1.

J. Landrum (1989). “Illustration of the Relationships Among Database Resolution, Map Scale, and Display
Technique,” Naval Ocean Research and Development Activity, NORDA Technical Note 439, 1-7.

M. Lohrenz (1991). “The Navy Standard Compressed Aeronautical Chart (CAC) Database,” Naval Research
Laboratory, SP 024:351:91, 1-93.

N. Roussopoulos, S. Kelley and F. Vincent (1995). “Nearest Neighbor Queries,” SIGMOD 1995, San Jose, CA.

